79 research outputs found

    Dental mesowear and the palaeodiets of bovids from Makapansgat Limeworks Cave, South Africa

    Get PDF
    The palaeodiet of seven bovids from Makapansgat Limeworks Cave are analysed using dental mesowear. Results suggest that Tragelaphus pricei had a highly attritional diet and was thus a browser. Tragelaphus sp. aff. T. angasii and Aepyceros sp. were also browsers, having diets similar in texture to the extant mule deer (Odocoileus hemionus). Gazella vanhoepeni had an intermediate attrition-abrasion wear signal and groups most closely with extant mixed feeders. Redunca darti and Makapania broomi are at the abrasion end of the wear continuum and cluster with living grazers, such as the hippotragines and reduncines. Parmularius braini had a highly abrasive diet similar to extreme grazers like the American bison (Bison bison) and topi (Damaliscus lunatus). The bovid mesowear data were compared to previous palaeodietary studies using taxonomic uniformitarianism, ecomorphology (hypsodonty), and stable carbon isotopes on the same Makapansgat taxa. This comparison showed that the mesowear results are most closely in-line with the isotope data, both of which are non-genetic signals that reflect diet during an extended portion of an animal’s life.The Fulbright College of Arts and Sciences at the University of Arkansas, Fayetteville, and a National Science Foundation Grant (to Matt Sponheimer, NSF BCS-0104260

    The influence of skull shape modularity on internal skull structures: a 3D-Pilot study using bears

    Get PDF
    In order to capture the phenotypic variation of the internal skull structures, such as the sinuses or the brain, it is necessary to perform CT scans in a large number of specimens, which is difficult and expensive. Therefore, while the external morphology of the mammalian cranium has been the subject of many morphometric studies, the internal structures of the cranium have been comparatively less studied. Here, we explore how the variation of external shape reflects the morphology of internal structures. We use the family Ursidae (Carnivora, Mammalia) as a case study because bears have a wide variability of cranial morphologies in part associated with different trophic ecologies. To do this, we digitized a set of landmarks in 3D with a Microscribe G2X from the external surface of the cranium in a wide sample of bears. Additionally, the crania of seven bear species were CT-scanned and prepared digitally to visualize the 3D models of the external cranium morphology and of internal structures. Subsequently, we divided the landmarks into two modules, splanchnocranium and neurocranium, and we perform a two-block partial least squares analysis (2B PLS) to explore the intraspecific (static) morphological changes associated with the covariation between them. These morphological changes were visualized using the morphing technique with the 3D models, looking at both the external shape and the internal structures. In addition, we inferred the volume of the sinuses and of the brain in each hypothetical model. Our results show that the first two PLS axes are associated externally with changes in the basicranial angle, face length and cranium height and width. Concerning the internal structures, there are parallel changes in dorso-ventral and medio-lateral expansion of sinuses and brain, accompanied by their corresponding changes in volume. In contrast, the third PLS axis is related to opposite changes in the volume of sinuses and brain. These preliminary results suggest that the opposite relationship between sinuses and brain volumes in the bear cranium is not as evident as expected, at least at intraspecific level.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Muknalia is a Collared Peccary (Pecari Tajacu): A Reply to Stinnesbeck et al.

    Get PDF
    Several years ago, a new genus and species of peccary, “Muknalia minima”, was described from the Pleistocene of Mexico. We previously examined that specimen and concluded that it was synonymous with the extant collared peccary, Pecari tajacu, but that taxonomic revision is rejected by the authors of the original study (this volume). Here, we provide further analysis of “Muknalia” and expand on previous evidence from both morphology and taphonomy that support synonymy with P. tajacu. We argue that morphological features, both in terms of size and shape, that were used to diagnose “Muknalia” all fall within the range of variation of the extant P. tajacu, or are a consequence of taphonomic modification, including human handling

    Helodermatid Lizard From the Mio-Pliocene Oak-Hickory Forest of Tennessee, Eastern USA, and a Review of Monstersaurian Osteoderms

    Get PDF
    The extant venomous Gila monster and beaded lizards, species of Heloderma, live today in southwestern USA and south along the Pacific coastal region into Central America, but their fossil history is poorly understood. Here we report helodermatid osteoderms (dermal ossicles) from the late Miocene-early Pliocene Gray Fossil Site, eastern Tennessee USA. Twenty-three species of mammals are known from the fauna including abundant Tapirus polkensis, as well as fishes, anurans, salamanders, turtles, Alligator, birds, and snakes. Beaded lizards belong to the Monstersauria, a clade that includes Primaderma + Paraderma + Gobiderma + Helodermatidae (Estesia, Eurheloderma, Lowesaurus, and Heloderma). Osteoderms of lizards in this clade are unique within Squamata; they typically are circular to polygonal in outline, domed to flat-domed in cross-section, have a vermiculate surface texture, are not compound structures, and do not have imbricate surfaces as on many scincomorph and anguid lizards. We review and characterize the osteoderms of all members of Monstersauria. Osteoderms from the cranium, body, and limbs of Heloderma characteristically have a ring-extension (bony flange) at least partly surrounding the dome. Its presence appears to be a key character distinct to all species of Heloderma, consequently, we propose the presence of a ring-extension to be an apomorphy. Three osteoderms from the Gray Fossil Site range from 1.5 to 3.0 mm in diameter, have the circular shape of helodermatid osteoderms with a domed apical surface, and have the ring-extensions, permiting generic identification. Macrobotanical remains from the Gray Fossil Site indicate an oak-hickory subtropical forest dominated by Quercus (oak) and Carya (hickory) with some conifer species, an understorey including the climbing vines Sinomenium, Sargentodoxa, and Vitis. Plant and mammal remains indicate a strong Asian influence

    Implications of Diet for the Extinction of Saber-Toothed Cats and American Lions

    Get PDF
    The saber-toothed cat, Smilodon fatalis, and American lion, Panthera atrox, were among the largest terrestrial carnivores that lived during the Pleistocene, going extinct along with other megafauna ~12,000 years ago. Previous work suggests that times were difficult at La Brea (California) during the late Pleistocene, as nearly all carnivores have greater incidences of tooth breakage (used to infer greater carcass utilization) compared to today. As Dental Microwear Texture Analysis (DMTA) can differentiate between levels of bone consumption in extant carnivores, we use DMTA to clarify the dietary niches of extinct carnivorans from La Brea. Specifically, we test the hypothesis that times were tough at La Brea with carnivorous taxa utilizing more of the carcasses. Our results show no evidence of bone crushing by P. atrox, with DMTA attributes most similar to the extant cheetah, Acinonyx jubatus, which actively avoids bone. In contrast, S. fatalis has DMTA attributes most similar to the African lion Panthera leo, implying that S. fatalis did not avoid bone to the extent previously suggested by SEM microwear data. DMTA characters most indicative of bone consumption (i.e., complexity and textural fill volume) suggest that carcass utilization by the extinct carnivorans was not necessarily more complete during the Pleistocene at La Brea; thus, times may not have been tougher than the present. Additionally, minor to no significant differences in DMTA attributes from older (~30-35 Ka) to younger (~11.5 Ka) deposits offer little evidence that declining prey resources were a primary cause of extinction for these large cats

    First Occurrence of the Enigmatic Peccaries Mylohyus elmorei and Prosthennops serus From the Appalachians: Latest Hemphillian to Early Blancan of Gray Fossil Site, Tennessee

    Get PDF
    Two peccary species, Mylohyus elmorei and Prosthennops serus are described from the medium-bodied fauna of the Gray Fossil Site (GFS) of northeastern Tennessee. This site, recognized as an oak-hickory forest, is latest Hemphillian or earliest Blancan based on mammalian biochronology, with an estimated age of 4.9-4.5 Ma. The GFS represents the only site outside the Palmetto Fauna of Florida with M. elmorei, greatly expanding the species range north over 920 km, well into the Appalachian region. This is also the first Appalachian occurrence of the relatively widespread P. serus. Our understanding of intraspecific variation for both M. elmorei and P. serus is expanded due to morphological and proportional differences found in cranial and dental material from the GFS, Tyner Farm locality, Palmetto Fauna, and within the literature. The GFS M. elmorei material represents the most complete mandible and second cranium for the species, and preserve intraspecific variation in the length of the diastema, dental proportions, and the complexity of the cuspules of the hypoconulid complex. Similarly, mandibular material from the GFS for P. serus exhibited larger dentitions and a greater degree of robustness than currently recognized for the species

    Chronoecology of the Cave Dwelling Orb-Weaver Spider, Meta ovalis (Araneae: Tetragnathidae)

    Get PDF
    Circadian clocks are endogenous time keeping mechanisms that are ubiquitous among animals. They enable coordination of many essential biological and metabolic processes in relation to the 24 hour light cycle on earth. However, there are many habitats on earth that are not subject to this light cycle. This study aims to look at the potential genetic drift of the circadian rhythm of a subterranean spider, Meta ovalis, as well as gathering general natural history information on this under-studied spider. This study will fill general gaps in knowledge of this spider and its habitat, highlight the importance of studying organisms within a subterranean environment, and place importance on cave conservation and acquiring knowledge of these specialized, and sensitive species. This study integrates circadian and foraging theory to evaluate species as circadian specialists and generalists based on how narrowly or widely their activity is spread over the 24 h cycle. We suggest that M. ovalis benefits from a generalist strategy, showing small bursts of focused activity widely dispersed across the 24 h cycle, allowing it to capture prey opportunistically whenever it is available. Live spiders were collected from area caves, monitored in an environment controlled for light and temperature, and returned to their cave of origin. The activity of each spider was analyzed for differences in circadian activity among and between populations to determine if there is a significant drift of the circadian strategy between isolated populations of Meta ovalis. We expect to see a different circadian strategy implemented between populations due to drift from the spiders being isolated from other populations

    Clarifying Relationships Between Cranial Form and Function in Tapirs, With Implications for the Dietary Ecology of Early Hominins

    Get PDF
    Paleontologists and paleoanthropologists have long debated relationships between cranial morphology and diet in a broad diversity of organisms. While the presence of larger temporalis muscle attachment area (via the presence of sagittal crests) in carnivorans is correlated with durophagy (i.e. hard-object feeding), many primates with similar morphologies consume an array of tough and hard foods—complicating dietary inferences of early hominins. We posit that tapirs, large herbivorous mammals showing variable sagittal crest development across species, are ideal models for examining correlations between textural properties of food and sagittal crest morphology. Here, we integrate dietary data, dental microwear texture analysis, and finite element analysis to clarify the functional significance of the sagittal crest in tapirs. Most notably, pronounced sagittal crests are negatively correlated with hard-object feeding in extant, and several extinct, tapirs and can actually increase stress and strain energy. Collectively, these data suggest that musculature associated with pronounced sagittal crests—and accompanied increases in muscle volume—assists with the processing of tough food items in tapirs and may yield similar benefits in other mammals including early hominins

    Dental Caries in the Fossil Record: A Window to the Evolution of Dietary Plasticity in an Extinct Bear

    Get PDF
    During the late Pleistocene of North America (≈36,000 to 10,000 years ago), saber-toothed cats, American lions, dire wolves, and coyotes competed for prey resources at Rancho La Brea (RLB). Despite the fact that the giant short-faced bear (Arctodus simus) was the largest land carnivoran present in the fauna, there is no evidence that it competed with these other carnivores for prey at the site. Here, for the first time, we report carious lesions preserved in specimens of A. simus, recovered from RLB. Our results suggest that the population of A. simus from RLB was more omnivorous than the highly carnivorous populations from the Northwest. This dietary variation may be a consequence of different competitive pressures

    Dental caries in the fossil record: a window to the evolution of dietary plasticity in an extinct bear

    Get PDF
    During the late Pleistocene of North America (≈36,000 to 10,000 years ago), saber-toothed cats, American lions, dire wolves, and coyotes competed for prey resources at Rancho La Brea (RLB). Despite the fact that the giant short-faced bear (Arctodus simus) was the largest land carnivoran present in the fauna, there is no evidence that it competed with these other carnivores for prey at the site. Here, for the first time, we report carious lesions preserved in specimens of A. simus, recovered from RLB. Our results suggest that the population of A. simus from RLB was more omnivorous than the highly carnivorous populations from the Northwest. This dietary variation may be a consequence of different competitive pressures.Funding for this project was provided by the ‘Spanish Ministry of Economy and Competitiveness (MINECO), grant (CGL2015-58300P) to BF, and a University of Alicante grant n° uausti15–03 to AR. FJS possess postdoctoral grant at Los Angeles County Natural History Museum (Dinosaur Institute, NHM) and the Sierra Elvira Foundation (Spain). APR is a FPI fellow of the Spanish MINECO (BES-2013-065469) associated to the project (CGL2012-37866) of BF
    • 

    corecore